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FOREWORD

The MITRE Corporation is concerned with the survivability of the
Air Force Command and Control Systems. It conducts studies in this
general area in order to determine the levels at which various systems
components fail and investigates various alleviating measures which may
be employed to raise the levels of survivability.

One phase of this work is concerned with the behavior of deep under-
ground hard command posts excavated in soil and rock when subjected to
nuclear attack.

Among the many problems involved in this area, one of the most
important and, perhaps, least understood is the phenomena associated with
the transmission of ground shock to the underground command post. It is
known that shock lads such as those produced by nuclear weapons will be
transmitted through the ground by means of stress waves; however, because
of the complexity involved, only skeletal information is presently avail-
able that can be applied to the actual design of the underground command
post. It is important that basic research in this field be accelerated
so that appropriate criteria can be established for the design of installa-
tions of interest to the Ccmand-Control Development Division.

At MIME programs have been initiated to study stress wave propagation
in various media because we are interested in many given geographic locations,
and since earth materials which vary widely from site to site exhibit differentL properties and characteristics, many analytical models are necessary to pre-
ditct the response behavior of the geologic materials at a variety of sites.
Some of these models are: linear-elastic, non-linear elastic, elastic-plastic,
elastic-locking, visco-elastic, visco-plastic, etc.

Information contained herein is concerned with stress wave propagation
phenomena in visco-elastic media. The numerical results given are for the
purpose of demonstrating visco-elastic effects and should not be construed
as representing the actual behavior of a given rock or soil medium. This is
due to a lack of information on the physical visco-elastic constants
associated with various types of rock and soil.

This report is a part of a series of studies currently being carried out
by MITRE and Paul Weidlinger, Consulting Engineer, New York City.

John J. O'Sullivan
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INTROUCTION

This report is one of a series of technical discussions and papers

I concerned vith the theory of wave propagation in solids vith special

applications to ground shock phenomena. It presents theoretical results

on the. free field effects due to progressing pressure loadings on the

j_ surface of-& semi-infinite linearly viscoelastic (standard solid) half-

space*

The ultimate purpose of this group of papers Is to arrive at conclusions

for the free field effects due to progressing surface pressure loadings on

-actual media such as rock or soil with complex properties which are difficult

to analyze. The problem of rocklike media has been approached by considering

L a succession of materials having gradually more complex propeities such as

1) an acoustic inviscid fluid# 2) a linear elastic solid, 3) a non-linearly

L elastic solid [(1).(3) - See Reference [1] and a linearly viscolastic solid

in the present report. It is felt that in this manners certain conclusions

which can be drawn for cases of simple properties can be extrapolated for

m ore cmplex properties by qualitative reasoning.

IThe paper represents a step In the Investigation of free field phenowna

in viscoelastic materials' but considerable future work remains to be performed

in this field. It presentgthe plane strain solution for the stress distribution.

[ produced by the uniform motion of the pressure wave on the surface of the Iedium.

fhe analysis Is based on the assumption that a steady state exists with respect

Ito a coordinate system attached to the moving load and that the velocity of the

1maving load Is greater than that of irrotatlonal and equivoluminal waves in the

I!
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sedium (superseimic case). Further investigations in which the free field

stresses in the trans-seismic and subuisalc regions are determined and in i

.which the velocity of the surface pressure varies as a function of tim

will be required for a more coalete picture of the -phenomena in question.

Attention must also be paid to the relation of the mathematical model

to the expected physical behavior of the material. For those rocks vhich

may be expected to act viscoelastically, much work remains to be done on

the exierimental determination of the appropriate viscoelastie constants 1

which are required as input parameters in the analysisj such Information

is not available at the present time.

Numerical results are presented for a hypothetical viscoelastic material

and the free field stresses are evaluated. They are copared with the cor-

responding stresses in the material in its relaed and unrelaxed elastic

state. The results are Illustrative only and should not be taken as.

applying to specific real materials unless experimental Investigations

show the coincidence of the viscoelastic parameters for the model and the

real material.

11
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1[ Lit of Byub.ols"

CL (Ct): Velocity of propagation of hlh (low) frequency Irrotatona-

f waves. C (fa X? +2

I CT , ) VelocitY of Propagation of high (low) frequency equivol inal

Waves. C,4(PD 4 'T

Laplace Transform of t(i).

(x:unit stop function. HW fx). < x Oj NHW )., x >O.

K: Bulk modulus.

j U: Ratio of relaxed to unrelated *bear modulus. a P

ML '%,ML, T:.bh oubersN. , P U ML, , "T...

L T

No ? L NyIFunctions Of Ylach nvibers s aL~ a L itd/ eta.

Ia

UL, DT 8 Transforms of viscoolastic operators, A

ML PI+12

t~~p), za p f tom f t1)

i*

SOther symbols er defined as they appear in the text,.

I
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+ 2us ~Ratio or relaxed to unrelaxed moduli. n- +2 u1 >e(u)

p: Laplace transform parameter. I
I,

poz Intensity of surface pressure.

Viscolastic operator. Q-u. I

I
t: Tim.

!
T: Relaxation time.

u'i: Cartesian coqponents of the displacement vector. I

Vs Velocity of steadily moving surface pressure. j

x, p i,: Fixed# reCtangularp Cartesian, space coordinates.

x, yo l: Space coordinates attached to the moving load. I

51j: roneker delta: 5j l 1 J B -O, i 0 J.

Functions of the Mach numbers: 5(+)42L

*(*2)2 4
(IMT 1) +4mIi
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IViolstic oprtor: A * 2 )2, +'~

I
I: Nondimnsional space coordinates: V. - .

I K Ratio of propagation velocity of high frequency equivoluminal

waves to high frequency irrotational raves. "

S()e): Unrelaxed (relaxed) Lam constant.

I
Viscoelastic La operator. -- •

'a *) Unrelaxed (relaxed) shear modulus.

I : Viscoelastic shear operator. . .

V: Poisson's ratio for the unrelaxed material.

Sp: Density of the material.

Oij: Cartesian components of the stress tensor.

aIJq (Oijt)S Portion of stress components due to the irrotational

(equivoluminal) potential.

1t
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Introduction.

This paper considers the plane strain problem of finding the stress

distributio-n produced by the uniform motion of a step pressure on the

surface of a linear viscoelastic (standard-solid) half-space (Fig. 1).

IThe speed of the load is assumed to be greater than the velocities of

plane irrotational and equivoluminal waves in the medium (superseismic case).

Iliminating the effect of initial conditions, it is assumed that the load

is moving in from -m, such that a steady state exists with respect to

a coordinate system attached to the moving load. The equivalent problem

Ifor the elastic case has been treated in Ref. (1).
The solution for arbitrary load distribution can be obtained by

superposition from the solution for the step pressure. Although not

considered here, the case of tangential loads on the surface of the half-

space could be treated in the same maner.

I Formulation.

let (i, j, ) denote fixed, rectangular, Cartesian, space coordinates,

while (x, y, a) denote space coordinates attached to the front of the

moving load pO 11(x) (Fig. 1), where pO is the pressure Intensity and H Is

the unit step function. The uniformly distributed pressure moves over

the surface of the half-space In the negative x direction with a speed V.

At the time t a Oj, the two coordinate systems are taken to be in coincidence

so that

x.i+vt, . .

II
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The stress-displacement relations in a homogeneous, Isotropic medium I
which is elastic in bulk and.viecoelastic in shear Is =

1 *" U,k 13 * P i,, Ji (2) 3
ijk - ,),i

with

x(3.)

where K Is the bulk modulus and is the shear operator? selecting the

standard-solid model:

at (3b)
1 + Ta

where IA i the "unrelaxed" and ni. (0 < a < 1) is the relaxed shear

modulus, while T is a relaxation time (see Ref. 2).

The equations of motion of a continuum In the absence of body forces,

are, for small, displacements,

.,a ijj " OU,(

where p is the density. Eqs. (2) and (4) cam be -combined to give the

differential equations on the displacements:

+ P')u3,3 ' + uIj (P)

By means of the Helmholts resolution., the displacement vector am be

separated Into an irrotatonl and equivoluminal part

41 0 'i + gijk fk,3 J 'joi * ' (6) I
where ai3 k is the alternating tensor, and where the Irrotational part come

from the scalar potential J and the equivoluminal part from the vector

potential et o
The usual convention of sumation over repeated subscripts Is adopted.
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I
Equation ( w) vi l be satisfied if and satisfy tho folloving equations:

I (7b)

I vhe+e' -. * 2,)€.,

_._. K_-+ rp + 2 p)dtIn 3 (To))

I 3

V being Poisson's ratio for the unrelaxed material. Note that for

I - <v< , o < 1.

I For plane strain in the (i, i) plane, a suitable form for the potentials
isIs J . j ( , .,) , I .1; . , I . - -1 , ;, ) 8)

j Since the solution Is a steady state solution .in the (x, s) coordinate

system, transforming to this system leads to equation independent of t.

Thus, by the use of Eqs. (1) and (8), Eqs. (7a) and (Tb) give:

*2
L.CT + C2 v  -' .

T - (9b)

1
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where i
X + 2p

*2 X

L Xp & Ln.

CL P r L (9)

C2 . IL c 2 . nc2
T p T P TU

The quantity CL (C*) represents the velocity of propagation of high (low)I

frequency, plane, irrotational waves in the standard-solid mdium while

CT (C;) represents the propagation velocity for high (low) frequenoy, plans i
equivoluminal waves.

The boundary conditions to be satisfied by j and fa a determined

from the traction conditions at the surface of the half spam, q a 0

a (9,0) - 0  (1o6)

a SSU~o - . pos(t) (10b) -T

Utlising Eqs. (1), (2), (6) and (9), Zqs. (10) can be written in terme of

~andj At q 0 1

(V2X -_ 2Q;IC . -- (2Q))

A .['j.71 + 2 (VT) R2(g)(1b

where

, Z-t (,) )

HT + a
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The formulation of the problem i not yet complete, for there is

j still a further condition to be specifLed which arises from physical

considerations. Because the load movea with a velocity which to greater

Ithan the propagation velocities in the standard-solid medium, no disturbances

can ever gat ahead of the load. Thus for I < 0, the medium Is undisturbed

1(see Fig. (1)). Actually, since the propagation velocities of irrotational

waves have a definite maximum value (CL), it is seen physically that there

will be a straight line of demarcation between the disturbed and undisturbed

portion of the medium - the Hisch line (or wave front) for irrotational

disturbances, indicated an Fig. (1) by the line O. irrotational disturbances

can exist only behind this line. Similarly, equivoluminal disturbances can

I exist only behind the equivoliuanal wave front or Mach line, O in Fig. (1).

Thus for I < 0 quiescent conditions existp and the solution will have

- non-vanishing values only for J > 0, permitting the use of a Laplace transfor

In

The formulation of the problem Is no colete. Equations (9) wust* e

solved subject to the conditions at I e 0, given by q.s. (11), and to the

condition of quiescence for q < 0. Having obtained I and I the displacements

and stresses may be conputed from Bqs. (6) eind (2), respectively, utilising

Eqs. (1) and (8).

Formal Solution.

The solution to the problem can be written formally as a coplex

Integral by the use of the Laplace transform, defined by

j 0

with the inversion



hi. =-

7+io 13

Applying this transform, and utilzing the condition of quiescenc I
for I < 0, Eqs. (9) yield

Ci2 -2 -oil) I
-0I

2- 21- (1iab)

where L 212
p+n( )2 1/2

LuU. -IX -+M e; , i> 0

(14c)

"L" . " 1)1/2 mT 1"€ )l/2

* 2 2
KQa 1)I/ 2 j MT 1)' 2

ML * V * V
CL L CT

Equations (14a b) have the solutions

i. -.'TI + BA (15b) r

vhere A, A', B, B' are arbitrary constants. The condition of quiescence

for I < 0 vil be satisfied if

A' a B .0 (sc)
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The constants A and B are determned from the transforms of the boundary

j conditions, Eqs. (U):

2 2 ---- 1 . (16s1)

P(- 2 1L P11 VT)

p

vhere

can nov be f'ound.-

Strese Components at the Wave fronts.

J From Eqs. (2) and (6) it is seen that the stress comonents u~y be
itten in tvo portions

. a + ? (18)

L ~ ~vhere o~ 9 results fro the irrottional Potential and a , t from the

equivolamnal potential j.

I



Utilisng the results of the preceding sections, the t.nsfoms of these

quntitie e e a i

0

I

PO

I
POI

m*o (19f

.. [ 2q [-, 1,, ] [2(q, (,].9 ,,)
PO

Note the formal correspondence betveen these results and the results for

the elastic body. If the Laplace transform (in the variable ft ) of the
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elastic solution [Ref. (1) - Es. (51-53)) is taken, and then And

I in he elastic solution are replaced by jT and L , qs. (19) are obtained.

Because of the complexity of the inverted forms of aIN and a ,j# I it

is useful to obtain closed form expressions for these quantities and their

I first derivatives at the wave fronts. These expressions are obtained by

considering the asymptotic expansions of the quantities 0 oi* and

S oi As shown in the Appendix, the first two coefficients of the

expansion In powers of Of e represent the values of oi,1 and

a Just behind the irrotational wave front. A similar situation

exists for the equivoluminal portion of the stress conents at the

equivoluminal wave front.

I ediately behind the irrotationa. wave front (i.e. 
at t- +

these values re:

a 1. 2 2)u ). .1) )e-,, (20a)PO

PO

) a a + 2. + b (20d)

I1
Im7
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a 2,2 (20)A

") .).2 (209)

]Po

- ~i4(i 2M2 - nj1f) 4(1-a)a2

;yyv "m -1 + i 2h

where -I

s .( _)(r. 1 )( ..)., . n

a . r4(- .)( .) + , @.(-,,) +@,-... (01

I;

Irmaetd4steIl, P behind the equi~vol.uminl wave front (i.e. ait I - m.1 '+ ) I

the valuta and first derivatives of ol ares I

Po I

I
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Ou (21c)

2. r.- 4

'x2 2Z +4 i (21d

a -* ~x4 (21)

a -- (21f)

vhere
lE

1(21h)

-2

II
I7

Note that the jumps at the two vave front* may be vrittenu

a l alF q ~ q

ll e-ip q

a °lit = t
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The quantities e 1 nd a E the equivalent jumps In an elastic

medium baving elastic modul equal to the unrelsamd moduli of the

standard solid.

Stress Cononents Far Behind the Wave Fronts. I

To obtain the value of the stress coponents far behind the vave

front, the final value theorem for the lplace transform is utillsed: I
lim p ; = ia 0J 3

The values obtained are (for I | -')' I

Gx .~(4 -)(4 aff.;) (22a)

I

= 1 - 1) (2a)
po

ox:. ~(22b)

*2 21
wl = " (22e)

st (22f)

Po B I

ii
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I - (2). (2 ( 4 2 ) 2

I r 0 (22b)

where
*2 2

5. (PT . 1) , 444 (221)

SThes values correspond to the values of the stress components vhich would

occur in an elastic medium having elastic moduli equal to those of the

totally relaxed standard-soli4. This fact might have been foreseen from

i . purely physical reasoning.

Approximate Expressions for the Stress Components.

By utilizing the expressions for the jumps and first derivatives of

the stresses behind the wave fronts, and for the values of the stresses

I a - a# approximate expressions for the stress components for all

values of may be constructed. For instancep having the value of a LJ9 and

jOjq) at the irrotational wave front, and of a s1- a suitable

curve may be interpolated to connect the value of a (with proper slope)

at the wave front and the asymptotic value of a i .at j . An exponential

type of response Is typical of linear viscoelastic phenomena, and such a

curve If therefore suggested. This suggestion Is supported In Ref. (31
where It is shown that such an approximation is sucesful In an analogous

problem (wave propagation in a rod of standard-solid behavior).

IJE

I
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Appendix

To show that the values and derivatives of a immediately 1
behind the irrotational wave front can be determined from the

coefficients of the asymptotic expansion of •' ij(pn)P

Heaviside's series expansion method is employed (Ref. (41). 3
Suppose e R-(p, y,) can be expanded in the seriesI

Inverting both sides

where the right hand side has been inverted term by tern (Justified in

Ref. ( )n), and the left hand side has been inverted by use of the shift

theorem with the knovledge that atq(tT) a 0 for t < M. Thus

aij9 (to) Ha - o An( ) n - 1D' ) n

nui

But the infinite sum represents the Taylor series expansion in g, about

I - mii of (continued analytically at t -

Hence

otn IIt Mq+
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roxatonh in Problems of Viscoelastic WaVe Pro egation.

Problema Involving stress wave propagation in viscoelastic materials

con generally be treated by interal transform methods, but the coplete

I'  mmerical evaluation of the Inversion Integral becomes in many cases

very complex and lengthy. It is usually possible, however, to use

I asymtotic methods to obtain the value of the stress a(to) and its time
derivative ;(to) at the time of arrival to, of the stress wave at a

rparticular point in the body; in many cases, these initial values may be

obtained In closed form. In addition, the long term solution for the

stress, a(u), can also be determined in a simple manners either from the

I pbysical situation or from an asymptotic evaluation of the inversion

Integral.

Once the values of u(to), 6(to) and a(m) have been found, it is

have presented an exponential interpolation in Reference [1]. Their

interpolation i based on the reasoning that sinoe an exponential type

of response is typical for linear viscoelastic media, an exponential

interpolation Is appropriate. Figures (la, b) show typical stresses a,

(at some point in the body) to which the interpolation my be applied

as, a function of an actual or non-dimensional time t. The comlete

history o the stress is given by Eq. (1) of Reference (1,:

0-0 t< to

(1

I Ur(-
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where t0, a, o and a. are evaluated first for the problem under

consideration.

I
In the application of the above interpolation to practical problem,

it is also possible to encounter cases in which (a - ) Is opposite in 3
sign to &0 " For such cases, the exponential interpolation of Eq. (1)

is obviously invalid since the exponential would be raised to a positive 1

power in time. Figures (2a, b) show typical stress-time relations of

this type. An Interpolation in the form of the product of a linear

polynomial in t multiplied by an exponential in t can be used in such I
a case. The complete history of the stress is then given byt

a-0 t<t o

(!tto (2) -

-a -0 (1+t o(t-to • -- t >t

In the case of Eq. (1), the interpolation vas uniquely determined by the

three values a, 0 o and a . In the present Interpolation, Eq. (2),

these three quantities and an additional constant T are required.

The value of T cannot be determined unless an additional asymptotic

value is obtained from the inversion integral of the problem; this In

general would be very difficult to do. It suezests itself, however, to

chose the decay time of the viscoelastic medium as a suitable value of

the constant T..I

The interpolations of Eqs. (1) and (2) may be utilized to obtain II
streaes which are produced by time vorying pressure loadings P(t) acting

on the viscoelastic body, once the stresses which are produced by a unit
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step pressure loading re evaluated. Let the quantities a@0 p i a

be the stresses at a point in the viscoelastic body which are produced

by a unit step pressure loading. The corresponding stress-tie history

I 0(t) which Is produced by the loading P(t) is obtained through the use

i of buhamel's integral and Eq. (1) or Eq. (2).

For an applied pressure of the form

t [ .F

I p o[Xe Dp + e P (3)

the stress a(t) produced at a point in the body beomes, using Eq. (1):

Ik I
T)

D -1 D
Pol~ 0 ~ j - kri f.(+.k)(f .)J.

(Tk? p p

11 p* % la~[ e -P t>_0

where -. t-t ° Is masured frca the time of arrival, to, et the wave at

the point and
1 k " bo&

46 0

Repeating the procedure with Eq. (2), the stress at a point in the

body due to the time decaying pressure loading of Eq. (3) becmsi

I
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where

and(
bay,, 0, (i)

A10
The Interpolations considered should prove convenient in different

problems of wave propagation in viscoelastic media. It cmii be applied

I in tWo - or three dimensional problems vhere two distinct signals, similar

to P and 8 vayes In elastic media are received at a point. In such cases,

each component of the signaimqy be approximated by an expression similar

to those given by Eq. (1), (2), (4) or (6). The applications of these

I interpolations to the stresses produced by a progressing surface pressure

on the surface of a viscoelastic half-space [Section I of this report)

are given in Section InI.

I

[
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I ITALUAMION OF TO O5UZSSES IN A VZBC(ZLABT!C KALF4FACZ WHICH M3

3?A PICZS8M3 TIDUUCATI U63FAC3 U2 t

The streses which a podued in ]Innear viscoelestia (sta

solid) half-space by the uniform otion of a step pressure an its surface

have been studied in Section I for the case In which the velocity of the

i btraveling surface pressure Is p ter than the velocities of plane Irro-

tational and equivolmuinal waves In the medium (superseimiC case),.

Spteific results were presented which allow the determination of the

quantities %01 io and e corresponding to both the irrotational and the

equivoluminal waves produced in the medium by the unit step preosure on

the surface. The quantities o, o a a. can; be used in conjunction With

the Interpolations which are presented in Section 17 to determine the

L stress history at a point in the mdium produced by a tine-decaying

surface pressure (Bqs. (Ii) or (6)p Section Ill.

The present Section presents numerical results for the stress caiponents

ewe loss and az at verious points in the viscoelastio medium (Fig. (1)]

which are produced by the time-decaying surface pressure shown in Fig. (2).

tsee Zq. (3) Section III- For comparison purposes, the corresponding

L stresses which would be produced, In an elastic medium haying a hear nodulus

equal to the unrelae shear odulus of the viscoelaotic medium re also

L shown In each Ose,

[
I
I



the stresses produced by the irrotatioml and the eq Lim oval Iavs

In.the viscoelastic media are first shown separately. In addition, the I
total stresses at a point are evaluated by , superiz sing the Irrota- I
tonal and the equivoluminal stresses vith an appropriate time delay.

Due to the absence of reliable information on the appropriate visco- 3
elastic constants for real msterials, a set of viscoelastlo constants has

been chosen for an illustrative example only. The results should not be

taken as applying to a specific real material unless the coincidence of

the viscoelastic parmeters for the real material and those used in the

Illustrative example can be shovn. The nmerical values of the material I
and the load constants which vere used In the cemputIos are tabulated

below. I
(I) Materia Constants - Viscoelatic Medium.

P - belaxed shear modus -I.=0(10) lb/in2.

.a Relaxed shear modul , a p/2 - 0.600 (106) l.b/in2 .

p - Mass density of edim - %1.% ,eseo b.
(v a 167 L/t,).

v n Poasscn'a ratio of unrelaxed body - 0.25. II
T eaxtion time for viscoelastic medium - 15 us.

(b) Mat Ua Constants - Linearly Elastic Media.

p = Mass density of medium - 5.186 lb.sec2 /t 1  II
v - Poisson's ratio = 0.25.

C - Velocity of P vaves = 10,000 ft/sec Eunrelaxed i,.

C a Velocity of S waves a 6,000 ft/sec [unrelaxed ].

p a Shear modulus p (unrelaxed) - 1.2 (106) lb/In.

or

- Shear modulus P ~ (rolexed) -0.6 (16) 2ng
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Ue elastic mediust for whieb (unr lan) io d will be referred

I to as Iastic-Thirelamtdj that fr which 0 (roe=&m) is used will. be

referred to as Ilastie-blaxed.

i (c) Constant. for Surfage Pressure m .stributio [Its. (2)).

Po aPeak Pressure 020001lb/inF.

V a Unifora velocity of traveling v 12,000 ft/seo.

Relaxation time of surface pressure . 30 Ms.

i. 3unmerical Results.

i Consider the eometry shown in Fig. (1) in which the point A is

located at a depth a n 500 ft and I and 3 represent the irrotational and

Ithe equivoluminul wave fronts respectively which are produced by the

surface pressure shown in Fig. (2).

Sligurei (3)*(5) show the stresses Ox3e ass and am which are produced

at the point A (a a 500 ft) by the irrotational wave in the viscoelastic

mdium. the value of the abscissa, v - O represents the arrival tim

of the wave at the point. The results were obtained using an interpolation

of the type shown in Eq. (4)v Section I11, end the input paramnters flo 0,

and wo were computed from Eq. (20) and Eq. (22) of Section I. In each

casep the corresponding stress in an elastic body whose shear modulus is

j+ equal to the shear modulus of the unrelaxed viscoelastic body is also shown.

It is seen that the high peak stress which is predicted by linear diastic theory

iis considerably attenuated by the viscoelastic medium. Doveverp at later

i times, the stresses in the viscoelastic body may be higher than those in the

linearly elastic body.

i
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The corresponding stresses are shown in Figs. (5)-(6) for the case m
of the equivoluminal wave. The value of the sbscssa -, 0 represents

the arrival time of the equivoluminal wave at the point A. Interpolations

of the type given by Zq. (4) were used In evaluating a, a - z and ass.

In all cases, it is seen that the peak stresses which are predicted by 3
linear elastic theory are significantly attenuated by the viscoelastic edlmi

In addition, the viscoelastic stresses are lower in magnitude than the

corresponding elastic stresses over the entire time history.

The comlete stress-time histories which are produced, at the point A

can be evaluated by superimposing the stresses shown In the previous

figures with an appropriate delay time. Figures (7)-(9) show the total I
stresses oxt ozs and a., for both the viscoelastic and the elastic

(unrelazed] media where the time v w 0 represents the arrival time of the I
irrotatonal wave I at the point in question. The peak stresses which

occur at the significant times, i.e. the arrival times of the irrotational

and equivoluminal waves at the point, are considerably attenuated by the

viscoelastic sedium. Intermediate values of the stresses my be larger

than those for the elastic [unrelaxedi medium. II
It should be noted that the significant attenuations of peak stresses

by the v1scoelastic medium we purely a function of the depth s and do

not *caur for relatively shallow depths. To illustrate this, Figs. (10)-CU) I
show the magnitude (not the direction) of the principal stresses at points

located at depths a - 50 ft and s 500 ft, for the irrotational and the

equivoluminal waves respectively. Interpolations of the typI given by

q. (4) were used in evaluating o for the irrotational wave while those. of

Eq. (6) were required for the case of the equivoluminal wave. For the stresses

produced by the irrotational wave, it is seen that the attenuation of the peak

stresses In the neighborhood of v a 0 is very small for shallow depths but

Increases significantly with depth.
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For the ratios /C*Uoountered In this exaMvve, the values of the

Ip

I pr'incipal irrotational elastlo stresses Obtained using the unrelmxd

shear modulus are practically epual. to the oowrespooiia stresses otalaed

by using the relaxed sheet modulus and ame~mt11 Gays asil

elastic stream cam' to presented.

I.
I

I
I:

I
i, e* Apendix A, "teortical Studies In Gound Ubok Phenmna", byK.~L.B .. Bleich, P. ol'v k i n , ii M Ousporgtin,1. UspWt E4Xop October 1960.
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